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SUMMARY

This paper proposes a method to derive a set of symmetrical and antisymmetric orthogonal shape functions,
which can be efficiently used in fluid-dynamic design optimization. The inverse design of an airfoil in
inviscid transonic flow conditions is proposed to demonstrate that a gradient-based optimization using
orthogonal profiles is 6–10 times faster than the same procedure using non-orthogonal interpolation
functions. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last years, automatic design employing computational fluid dynamics has significantly grown
in importance due to the rapid advances in numerical methods for the solution of Navier–Stokes
equations. Besides the fundamental designer’s work devoted to the development of optimization
methodologies, a crucial point is encountered when using a gradient-based approach, which can
influence both the optimizer performance and the product definition, namely the choice of the
design parameters. Great efforts have been recently made by several authors in order to select an
appropriate set of design parameters, which could reduce the design cost and, at the same time,
could be effective in finding improved designs. The best choice in terms of flexibility consists of
keeping the ordinates of the mesh points on the profile surface as design parameters [1], with the
drawback that a very high number of parameters is needed. Moreover, since a perturbation of a
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design parameter would produce only a local perturbation of the flow solution (thus deteriorating
the convergence of the optimization problem), a smoothing of the blade profile is required. A very
common approach, close to the direct use of coordinates and thus very flexible, is the representation
of all or part of the airfoil surface by spline curves or Bezier–Bernstein polynomials [2] using some
points of the blade or control points as design parameters, respectively. Another widely employed
parametrization consists of combining a number of existing profiles (shape functions), using the
corresponding weights as design parameters, see, e.g. Reference [3], where a limited number of
base functions are used. Other representations apply modifying functions, such as the widely used
Hicks–Henne functions [4], to an existing base airfoil or blade.

It should be noticed that none of the above parameterizations form an orthogonal basis and in
some cases there could even be the risk of a non-unique mapping between parameter values and
geometry [5]. On the contrary, orthogonal profiles have been chosen by several authors with the
aim of representing wing sections with a number of parameters as smaller as possible [6, 7]. Apart
from this undoubtable advantage, none of them has analyzed how a gradient-based optimization
procedure can take advantage of choosing an orthogonal basis rather than a non-orthogonal one.

The aim of this paper is two-fold: (i) to propose a method to derive a set of orthogonal shape
functions by modifying an airfoil-like Bézier–Bernstein polynomial; the method is able to provide
a set of symmetrical and antisymmetrical shape functions that will be combined according to the
values of the design parameters to define the profile to be optimized; and (ii) to demonstrate that
the efficiency of a gradient-based optimization method is significantly improved when using such
orthogonal profiles, rather than a non-orthogonal basis.

2. ADVANTAGES OF USING AN ORTHOGONAL BASIS

A simple optimization problem is proposed to motivate why an orthogonal basis should be preferred
to a non-orthogonal one, when applying a gradient-based optimization procedure: find the design
parameters �1 and �2 that minimize the L2-norm of a two-dimensional vector f, obtained by a
linear combination of the vectors f1=(1,0) and f2=(�,1) (� is a free parameter), namely as

f=�1f1+�2f2=(�1+��2,�2) (1)

Clearly, f1 and f2 represent an orthogonal basis only for �=0 and the absolute minimum of the
objective function

I =(�1+��2)
2+�22=�21+2��1�2+(1+�2)�22 (2)

is obtained for �1=�2=0. Suppose to start a gradient-based optimization procedure from the point
(�1,�2)=(1,1), where the following sensitivity derivatives can be analytically retrieved:

�I
��1

∣∣∣∣
(1,1)

= 2(1+�)

�I
��2

∣∣∣∣
(1,1)

= 2(1+�+�2)

(3)

Equation (3) shows that when an orthogonal basis is employed (i.e. when �=0), the two partial
derivatives are equal and the search direction −∇ I points exactly towards the solution (�1,�2)=
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(0,0) of the optimization problem. On the other hand, as |�| increases, the objective function
gradient is shifted more and more aside from the exact search direction. As a consequence, the
convergence rate of the optimization procedure would become slower. In the limit case of linearly
dependent vectors (|�|→∞), the solution (0,0) cannot be achieved.

3. GENERATION OF ORTHOGONAL PROFILES

This section proposes the application of the Gram–Schmidt procedure to derive a set of orthogonal
profiles, whose combination can be effectively used to define a single-element airfoil.

A set of airfoil-like profiles p�, �=1, . . . ,n p, is generated by using the Bézier–Bernstein
polynomials

bn(q)=
n∑
j=0

b j
n!

j !(n− j)!q
j (1−q)n− j , q∈[0,1] (4)

where b j , j =0, . . . ,n contains the coordinates of the j th Bézier–Bernstein control point. The
first (b0) and the last (bn) control points coincide, so as to obtain a wedged trailing edge. The
Bézier–Bernstein polynomials are here scaled so as to fix the leading edge at (0,0) and the trailing
edge at (1,0). Thus, the number of independent profiles, p�, reduces to n p =n−2.

The first curve, p1, is obtained by fixing the (n+1) Bézier–Bernstein control points b j so
as to draw a reasonable aerodynamic profile. Additional (n p−1) aerodynamic profiles p� can
be generated by shifting the control points along y, b0 and bn remaining unchanged. Then, the
set of orthogonal shape functions f�, �=1, . . . ,n p, is finally obtained as follows: the first curve
remains unchanged, namely f1= p1; the other curves f�, �=2, . . . ,n p, are obtained from the curve
p� and from the orthogonal shape functions f j , 1� j<�, previously computed, according to the
Gram–Schmidt orthogonalization process:

f� = p�−
�−1∑
j=1

∮
p� f j dx∮
f 2j dx

f j (5)

Finally, the shape functions f�, �=2, . . . ,n p, are empirically scaled so that the maximum of f� is
equal to the maximum of f1.

During the optimization process, each current geometry is defined by a linear combination of
N� shape functions f�:

f =
N�∑

�=1
�� f� (6)

where the weights �� are the N� design parameters, with N��n p (n p being the number of generated
profiles, N� being the number of actually employed profiles).

An example with n=12 is proposed, where the above strategy is slightly modified so as to
recover a set of symmetric and antisymmetric profiles. Figure 1 shows the location of the control
points, which provides the first curve p1. The second curve p2 is obtained by shifting downwards
the ordinate y6 of the leading-edge control point while keeping the other control points fixed. The
resulting base function f2, derived from the application of Equations (5) to the Bézier–Bernstein
polynomials p1 and p2, is antisymmetric: ylower= yupper, ∀x ∈[0,1]. The third curve p3 is the
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Figure 1. Control points and first profile generated.
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Figure 2. Symmetrical orthogonal functions 1,3 and 5.

Bézier–Bernstein polynomial obtained by an upward shifting of y5 and a downward shifting of
y7 with the same (small) amplitude. The resulting curve f3 is symmetrical: ylower=−yupper, ∀x ∈
[0,1]. The fourth curve p4 is obtained by assigning a downward shifting to ordinates y5 and
y7. The resulting base function f4, derived from the application of Equations (5) to the Bézier–
Bernstein polynomials p� (�=1, . . . ,4), is antisymmetric. Other symmetric and antisymmetric
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Figure 3. Antisymmetric orthogonal functions 2,4 and 6.
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Figure 4. Symmetrical orthogonal functions 7 and 9.

curves with higher frequency are obtained by shifting the other control points along y. In particular,
the symmetrical base functions f5, f7 and f9 are obtained by means of a symmetric divergent
shifting of y4 and y8, of y3 and y9, and of y2 and of y10, respectively; the antisymmetric base
functions are obtained by means of a downward shifting of y4 and y8, of y3 and y9 and of y2
and y10, respectively. Figures 2–5 show the resulting orthogonal profiles, after scaling. Thanks
to the generality of the Gram–Schmidt method, the above procedure can be straightforwardly
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Figure 5. Antisymmetric orthogonal functions 8 and 10.

applied to other aerodynamic or general-purpose single-element shapes, even using interpolation
functions different from the Bézier–Bernstein polynomials. In case of multi-element geometries,
the procedure should be preferably applied to each component.

4. MULTIGRID-AIDED FINITE-DIFFERENCE PROGRESSIVE OPTIMIZATION

The gradient-based progressive optimization strategy firstly proposed in Reference [8] is here
employed in combination with the multigrid-aided finite-difference (MAFD) gradient evaluation
procedure of References [9, 10]. The upwind second-order-accurate flow solver for unstructured
grids described in References [11, 12] is used to compute the flow field.

5. PERFORMANCE COMPARISON

The inverse design of a transonic (inviscid) airfoil is proposed in this section to analyze the different
performance of a gradient-based optimization when changing the design parameter choice from a
linear combination of orthogonal profiles to a linear combination of the original Bézier–Bernstein
polynomials. The objective function is defined as follows:

I (n)= 1

2Nb

Nb∑

i=1

[p(i)− p̂(i)]2 (7)

where p is the current pressure and p̂ is the target pressure on the airfoil surface, discretized by Nb
intervals. Since a low number of orthogonal functions are sufficient to define existing airfoils [6, 7],
the number of design parameters has been here fixed as N� =4. When using the orthogonal shape
functions, the initial profile is derived from Equation (6) by setting �1=3.0 and �� =0.0 for �>1,
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whereas the target pressure distribution has been obtained by computing the inviscid transonic
flow (M∞ =0.7) past the airfoil corresponding to �1=1.2, �2=0.5, �3=0.1, �4=0.1. In order to
recover the initial and the target profiles with both representations, the initial set of control points
b j =(x0j , y

0
j ), j =0, . . . ,n, is modified as follows:

1. Determine the profile thickness by amplifying the ordinate of each control point:

ŷ j =�1y
0
j , j =0, . . . ,n (8)

2. Modify the profile shape by moving the leading-edge control points:

yk = ŷkk=0, . . . ,4 and k=n−5, . . . ,n, y6= ŷ6+�2

y5 = ŷ5+�3+�4, y7= ŷ7−�3+�4
(9)

The first performance comparison employs a steepest-descent search direction and a step size
computed by simply multiplying the objective function gradient times the negative constant coeffi-
cient which empirically minimizes the computational time required by each application. Figures 6
and 7 provide the convergence histories of the flow residual, of the objective function and of the
magnitude of the objective function gradient, obtained by using orthogonal and non-orthogonal
profiles, respectively. One work unit is defined as one (converged) MG computation of the target
flow. As clearly visible, the same (almost standard) gradient-based procedure is about six times
faster when employing an orthogonal basis. Then, the strategy proposed in Reference [8] for
modifying the search direction and the step size according to the sign of each sensitivity and to
the convergence level of the optimization procedure is employed for a further comparison between
orthogonal and non-orthogonal bases. Figures 8 and 9 provide the corresponding convergence
histories: the use of an adaptive search strategy allows a further, significant reduction of the required
computational time in the case of the orthogonal profiles, whereas a negligible improvement
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Figure 6. Steepest-descent constant-coefficient MAFD progressive optimization using orthogonal profiles.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1175–1184
DOI: 10.1002/fld



1182 L. A. CATALANO, A. DADONE AND V. S. E. DALOISO

work
0 10 20 30 40 50 60

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

log10 (I)

log10 ⎜res⎜

log10 ⎜∇I⎜

Figure 7. Steepest-descent constant-coefficient MAFD progressive optimization using the
Bézier–Bernstein representation.
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Figure 8. MAFD progressive optimization of References [9, 10] using orthogonal profiles.

is obtained when using the original Bézier–Bernstein representation: the strong oscillations in
the convergence history (different choices of the coefficients produce less oscillations but slower
convergence) clearly evidentiate that the Bézier–Bernstein polynomials suffer from this adaptive
search strategy. Using the orthogonal profiles makes the adaptive MAFD progressive optimization
ten times faster than the same procedure using the original Bézier–Bernstein representation.
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Figure 9. MAFD progressive optimization of References [9, 10] using the Bézier–Bernstein representation.

6. CONCLUSIONS

A method to derive a set of orthogonal shape functions by modifying an airfoil-like Bézier–
Bernstein polynomial is proposed. The method is able to provide a set of symmetrical and anti-
symmetric shape functions that can be used in optimization to represent the body surface. The
solution of an inverse design problem demonstrates the superior performance of the orthogonal
representation. In particular, the computational time required by a gradient-based design optimiza-
tion using the orthogonal shape functions is 6–10 times lower than that required when using the
Bézier–Bernstein representation.
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